Math, asked by jithinq123, 9 months ago

Integral (7cos^3x+8sin^3x)÷3sin^2xcos^2x

Answers

Answered by pulakmath007
7

SOLUTION

TO DETERMINE

 \displaystyle \int \sf{ \frac{7 { \cos}^{3} x + 8 { \sin}^{3}x }{3 { \sin}^{2}x { \cos}^{2} x } dx}

EVALUATION

 \displaystyle \int \sf{ \frac{7 { \cos}^{3} x + 8 { \sin}^{3}x }{3 { \sin}^{2}x { \cos}^{2} x } dx}

 =  \displaystyle \int \sf{ \frac{7 { \cos}^{3} x  }{3 { \sin}^{2}x { \cos}^{2} x } dx} +  \int \sf{ \frac{ 8 { \sin}^{3}x }{3 { \sin}^{2}x { \cos}^{2} x } dx}

 =  \displaystyle \int \sf{ \frac{7 { \cos}^{} x  }{3 { \sin}^{2}x } dx} +  \int \sf{ \frac{ 8 { \sin}^{}x }{3  { \cos}^{2} x } dx}

 =  \displaystyle  \frac{7}{3} \int \sf{  \csc x \cot x \: dx} +   \frac{8}{3} \int \sf{  \sec x \tan x dx}

 =  \displaystyle  -  \frac{7}{3}  \sf{  \csc x} +   \frac{8}{3}\sf{  \sec x } + c

Where C is integration constant

Note : csc x = cosec x

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

a

∫ x/2+x⁸ dx ,Evaluate it.

-a

https://brainly.in/question/5382314

Similar questions