Math, asked by rockzzjop5l9ob, 1 year ago

integral cotx/cosecx-cotx

Answers

Answered by MaheswariS
8

\textsf{First we have to modify the integrand in such a way}

\textsf{that it suitable for integration}

\int\;\frac{cotx}{cosecx-cotx}\;dx

\textsf{Multiply both numerator and denominator by cosecx+cotx}

=\int\;\frac{cotx}{cosecx-cotx}{\times}\frac{cosecx+cotx}{cosecx+cotx}\;dx

=\int\;\frac{cotx(cosecx+cotx)}{cosec^2x-co^2tx}\;dx

=\int\;\frac{cosecx\,cotx+cot^2x}{1}\;dx

=\int[cosecx\,cotx+(cosec^2x-1)]\;dx

=\int[cosecx\,cotx+cosec^2x-1]\;dx

=-cosecx+(-cotx)-x+c

=-(x+cosecx+cotx)+c

\implies\bf\int\;\frac{cotx}{cosecx-cotx}\;dx=-(x+cosecx+cotx)+c

Similar questions