Math, asked by mohannagalla, 1 year ago

integral cotx/logsinx

Answers

Answered by abcxyz12
6
\mathcal{\huge{\purple{\star\:Hayy \: Mate...!! \:\star}}}


  <i>
Ans : I = ⌡ {cotx / log(sinx) } dx

Let u=log(sinx)

du/dx = (1/sinx) * d(sinx)/dx

du/dx = cosx/sinx

du = cotx dx

Therefore : I = ⌡ {1 / u } du

I = log(u) + C

I = log(logIsinxI)+C

  <b>

  <Marquee> ❤️⭐I hope you mark as brainlist answer⭐❤️✨✨✨✨
Similar questions