integral cotx/logsinx
Answers
Answered by
6
Ans : I = ⌡ {cotx / log(sinx) } dx
Let u=log(sinx)
du/dx = (1/sinx) * d(sinx)/dx
du/dx = cosx/sinx
du = cotx dx
Therefore : I = ⌡ {1 / u } du
I = log(u) + C
I = log(logIsinxI)+C
❤️⭐I hope you mark as brainlist answer⭐❤️✨✨✨✨
Similar questions