Math, asked by abhijannu4u, 8 months ago

integral DX by root x minus x square ​

Answers

Answered by kannanpranav123
2

Answer:

Step-by-step:

pls mark me as brainlist

Attachments:
Answered by jitumahi435
2

We need to recall the following integration formula.

  • \int\frac{1}{\sqrt{1-x^2} }dx=sin^{-1}x+C

This problem is about integration.

Given:

I=\int\frac{dx}{\sqrt{x-x^2} }

Rewrite the denominator as a complete square.

I=\int\frac{1}{\sqrt{\frac{1}{4}-(x-\frac{1}{2})^2  } }dx

I=\int\frac{1}{\sqrt{\frac{1}{4}-(\frac{2x-1}{2})^2  } }dx

I=\int\frac{1}{\sqrt{\frac{1}{4}-\frac{(2x-1)^2}{4}  } }dx

Substitute u=2x-1.

Differentiate both sides, we get

du=2dx

\frac{du}{2}=dx

Then,

I=\int\frac{1}{2\sqrt{\frac{1}{4}-\frac{u^2}{4}  } }du

I=\int\frac{1}{2\sqrt{\frac{1-u^2}{4} } }du

I=\int\frac{1}{\frac{2}{2} \sqrt{{1-u^2} } }du

I=\int\frac{1}{\sqrt{{1-u^2} } }du

I=sin^{-1}u+C

I=sin^{-1}(2x-1)+C

Thus, \int\frac{dx}{\sqrt{x-x^2} }=sin^{-1}(2x-1)+C

Similar questions