Math, asked by himanshusingh58132, 1 year ago

integral DX upon X square + 2 X + 2 ​

Answers

Answered by Anonymous
58

Answer:

 \large \bold\red{{ \tan }^{ - 1} (x + 1) + c}

Step-by-step explanation:

We have to integrate,

\displaystyle \int \frac{dx}{ {x}^{2} + 2x + 2 }  \\  \\  \\  = \displaystyle \int \frac{dx}{( {x}^{2} + 2x + 1) + 1 }  \\   \\ \\  = \displaystyle \int \frac{dx}{ {(x + 1)}^{2}  +  {(1)}^{2} }

Now,

Let's assume that,

x + 1 = t

Differentiating both the sides,

We get,

 =  > dx = dt

Substituting the values,

We get,

 = \displaystyle \int \frac{dt}{ {t}^{2}  +  {1}^{2} }  \\ \\ \\  = \displaystyle \int \frac{dt}{1 +  {t}^{2} }  \\  \\\\  =  { \tan}^{ - 1} t + c

Substituting the value of t,

We get,

 =   \large \bold{{ \tan }^{ - 1} (x + 1) + c}

where,

c is an integral constant.

Similar questions