integral dx(x^1/2+x^1/3)
Answers
Answer:-
Before solving, remember that,
Now, we will solve,
Now, add the constant of integration,
Answer:
Before solving, remember that,
\displaystyle \int \sf \small(f(x) \pm g(x))dx = \int f(x)dx \pm \int g(x)dx∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx
\displaystyle \int\sf {x}^{n} dx = \frac{ \large{x}^{n + 1} }{n + 1}∫x
n
dx=
n+1
x
n+1
Now, we will solve,
\displaystyle \int \sf \small \big( \sqrt{x} + \sqrt[3]{x} )dx∫(
x
+
3
x
)dx
\displaystyle \sf = \int \big( \sqrt{x} )dx + \int \big( \sqrt[3]{x} \big)dx=∫(
x
)dx+∫(
3
x
)dx
\sf = \large\frac{ {x}^{ \frac{1}{2} + 1} }{ \frac{1}{2} + 1 } + \frac{ {x}^{ \frac{1}{3} + 1 } }{ \frac{1}{3} + 1}=
2
1
+1
x
2
1
+1
+
3
1
+1
x
3
1
+1
\sf = \large \frac{x \sqrt{x} }{ \frac{3}{2} } + \frac{x \sqrt[3]{x} }{ \frac{4}{3} }=
2
3
x
x
+
3
4
x
3
x
Now, add the constant of integration,
\sf = \frac{2x \sqrt{x} }{3} + \frac{3x \sqrt[3]{x} }{4} + C, C \in \R=
3
2x
x
+
4
3x
3
x
+C,C∈R