Math, asked by mukeshrani1381, 8 months ago

integral e^ (log x + log sin x )dx​

Answers

Answered by Anonymous
57

Question :

Integrate

\tt\int\:e^{(\log\:x+\log\:sin\:x)}dx

Solution :

We have to integrate

\sf\int\:e^{(\log\:x+\log\:sin\:x)}dx

We know that:

\sf\:\log\:a+\log\:b=\log(ab)

\sf\:and\:e^{\log_e(a)}=a

Thus ,

\sf\int\:e^{(\log\:x+\log\:sin\:x)}dx

\sf\int\:e^{\log(x\:\sin\:x)}dx

\sf\int\:x\:\sin\:x\:dx

Now , Apply Integration by parts :

Then ,

\sf\int\:x\:\sin\:x\:dx

\sf\:=x\times(-\cos\:x)-\int\:(-cosx)\:x\:dx

\sf\:=x\times(-\cos\:x)-(-sinx)+c

\sf\:=-x\cos\:x+\sin\:x+c

Hence ,

\tt\int\:e^{(\log\:x+\log\:sin\:x)}dx=-x\cos\:x+\sin\:x+c

More About the topic :

Integral by part:

\tt\int\:u(x)\times\:v(x)=u(x)\int\:v(x)dx-\int[u'(x)\times\int\:v(x)dx]

Where , u(x) and v(x) are diffentiable function .

Answered by Anonymous
13

Given :

  •  ∫ e^{log x + log\:sin x}dx

To find :

  •  ∫ e^{log x + log\:sin x}dx

According to the question :

 ∫ e^{log x + log\:sin x}dx

∫ x sin ( x ) dx

Using partial Integration Formula :

∫ udv = uv - ∫ vdu

u ( x ) = x, dv = ( x )

Solving :

-x cos ( x ) - ∫ ( -cos ( x )) dx

∫ af ( x ) dx = a ∫ f ( x ) dx

-x cos ( x ) - ( - ∫ cos ( x ) dx )

→ The integral of cosine is sine.

-x cos ( x ) - ( -sin ( x ))

-x cos ( x ) + sin ( x )

-x cos ( x ) + sin ( x ) + c

How did I solved this :

⇛Used partial Integration Formula

⇛Used Property of Integration.

So, It's Done !!

Similar questions