Integral for calculating length of arc of parabola y^2=4x, cut of by the line
Answers
Answer:
Step-by-step explanation:
Putting y=2a⋅tan θ
=4a⋅∫π402asecθ⋅sec2θdθ
Let J = ∫secθ⋅sec2θdθ
Applying integration by parts will give
J=12⋅[secθtanθ+ln|secθ+tanθ|]
Then,
I=4a⋅12⋅[secθtanθ+ln|secθ+tanθ|]π40
=2a⋅(2–√+ln(1+2–√)−0)
=a⋅(22–√+ln(3+22–√)) ,
The required length.
Step-by-step explanation:
y^2 = 4ax => 2y(dy/dx)=4a
=> dy/dx= 4a/2y=2a/y.
√{1+(dy/dx)^2} = √{1 + (2a/y)^2}
=√{1+(4a^2/y^2) = √{1 + 4a^2/4ax}
= √{(x+a)/x}=√(x+a)/√x. But the length of the curve
= integ.(a to b)√{1+(dy/dx)^2} dx
So the required length
=2.integ.(0 to a)√(x+a)/√x dx
Let √x =t => 1/2√x dx = dt=> dx/√x = 2dt
x = t^2 > x+a = t^2+a. When x=0, t=0 and when x=a, t=√a. The required length
=2.integ.(0 to √a)√(t^2+a)2dt
=4[(t/2)√(t^2+a) + (a/2)log{t+√(t^2+a)}] (0 to √a)
=4[(√a/2)√(2a)+(a/2)log(√a+√(2a)] -4[(a/2)log√a
=2√2.a+2alog{√a(1+√2)}-2alog√a
=2√2.a +2alog(1+√2).
If there is any correction please correct it.