Math, asked by sivaparamasivam1902, 16 days ago

integral limit 0 to π/2( sinx - cosx /1+sinx-cosx ) dx

Answers

Answered by amansharma264
6

EXPLANATION.

\sf \implies \displaystyle I = \int\limits^{\pi/2}_{0} \bigg[ \frac{sin(x) - cos(x)}{1 + sin(x) - cos(x)}  \bigg] dx . - - - - - (1).

As we know that,

King Concept.

\sf \implies \displaystyle \int\limits^b_a f(x)dx = \int\limits^b_a f(a + b - x) dx

Using this concept in the equation, we get.

\sf \implies \displaystyle I = \int\limits^{\pi/2}_{0} \bigg[\dfrac{sin(\pi/2 - x) - cos(\pi/2 - x)}{1 + sin(x) - cos(x)} \bigg] dx

\sf \implies \displaystyle I = \int\limits^{\pi/2}_{0} \bigg[ \frac{cos(x) - sin(x)}{1 + sin(x) - cos(x)}  \bigg] dx. - - - - - (2).

Adding equation (1) and (2), we get.

\sf \implies \displaystyle 2I = \int\limits^{\pi/2}_{0} \bigg[ \frac{sin(x) - cos(x) + cos(x) - sin(x)}{1 + sin(x) - cos(x)}  \bigg] dx

\sf \implies \displaystyle I = 0.

\sf \implies \displaystyle \boxed{\int\limits^{\pi/2}_{0} \bigg[ \frac{sin(x) - cos(x)}{1 + sin(x) - cos(x)}  \bigg] dx  = 0. }

                                                                                                               

MORE INFORMATION.

\sf \implies \displaystyle  \int\limits^{\pi/2}_{0} ln(sin\ x)dx = \int\limits^{\pi/2}_{0} ln(cos \ x)dx = \frac{- \pi}{2} ln(2).

\sf \implies \displaystyle  \int\limits^{\pi/2}_{0} ln(cosec\  x)dx = \int\limits^{\pi/2}_{0} ln(sec \ x)dx = \frac{\pi}{2} ln(2).

\sf \implies \displaystyle  \int\limits^{\pi/2}_{0} ln(tan \  x)dx = \int\limits^{\pi/2}_{0} ln(cot \ x)dx = 0.

Similar questions