integral log natural x over x dx is equal to
Answers
Answered by
4
EXPLANATION.
⇒ ∫㏒(x)/x dx.
As we know that,
By using substitution method in this equation, we get.
⇒ log(x) = t.
Differentiate w.r.t x, we get.
⇒ dx/x = dt.
⇒ ∫t dt.
⇒ t²/2 + c.
Put the value of t = ㏒(x) in the equation, we get.
⇒ ㏒(x)²/2 + 2.
MORE INFORMATION.
(1) = ∫sin x dx = - cos x + c.
(2) = ∫cos x dx = sin x + c.
(3) = ∫tan x dx = ㏒(sec x) + c = - ㏒(cos x) + c.
(4) = ∫cot x dx = ㏒(sin x) + c.
(5) = ∫sec x dx = ㏒(sec x + tan x ) + c = - ㏒(sec x - tan x) + c = ㏒tan(π/4 + x/2) + c.
(6) = ∫cosec x dx = - ㏒(cosec x + cot x) + c = ㏒(cosec x - cot x) + c = ㏒tan(x/2) + c.
(7) = ∫sec x tan x dx = sec x + c.
(8) = ∫cosec x cot x dx = - cosec x + c.
(9) = ∫sec²xdx = tan x + c.
(10) = ∫cosec²xdx = - cot x + c.
Similar questions