Math, asked by amru, 1 year ago

integral log [sin x]

Answers

Answered by kvnmurty
37
The indefinite Integral of Log (Sin x) dx has no simple function form.  That can only be expressed in terms of complex functions.

It can be found by Taylor series expansion or Mclaurin series.

But definite integral from 0 to pi/2 can be found  to be  - pi/2 * Ln 2..

Repetitively\ Apply\ \int{u}\ dv=uv-\int {v}\ du\\\\\int Log\ sinx\ dx=x\ LogSinx-\int {x\ cotx}\ dx\\\\=x\ logSinx-x^2/2\ Cotx+1/2 \int\ x^2\ cosec^2x\ dx\\\\=x\ logSinx-x^2/2\ Cotx+x^3/6\ cosec^2x+1/3\ \int {x^3 cosec^2x\ cotx}\ dx\\\\x\ logSinx-x^2/2\ Cotx+x^3/6\ cosec^2x+x^4/12\ cosec^2x\ cotx+.....

If we want to evaluate the definite integral then:

I=\int \limits_0^{\pi/2} {LogSinx}\ dx\\\\=\int \limits_{\pi/2}^0 {LogSin(\frac{\pi}{2}-x})\ d(\frac{\pi}{2}-x)\\\\So\ I=\int \limits_0^{\pi/2} {LogCosx}\ dx\\\\I+I=\int \limits_0^{\pi/2} {Log\frac{Sin2x}{2}}\ dx\\\\=\frac{1}{2} \int \limits_{2x=0}^{\pi}LogSin2x\ d(2x)-\int \limits_0^{\pi/2}Log2\ dx\\\\=\frac{1}{2} [\int \limits_0^{\pi/2} {LogSinx}\ dx+\int \limits_{\pi/2}^{\pi} {LogSinx}\ dx]-\pi/2*Log2

2I=\frac{1}{2}[I+I]-\pi/2*Log2\\\\I=-\frac{\pi}{2}Log2
Answered by dhankhar15134
14

Answer:

Tan x

Step-by-step explanation:

Log sinx

=(1/sinx) *cosx

=Tanx

Similar questions