Math, asked by jasmeenbehera31, 6 months ago

integral of 0 to pi/2 root (cot x) / root( cotx)+root (tan x) dx​

Answers

Answered by pulakmath007
2

SOLUTION

TO EVALUATE

\displaystyle  \sf\int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx

FORMULA TO BE IMPLEMENTED

 \boxed{ \:  \: \displaystyle  \sf\int\limits_{0}^{ a }  f(x)  \, dx  = \int\limits_{0}^{ a }  f(a - x)  \, dx  \:  }

EVALUATION

Let I be the given given integral

\displaystyle  \sf I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx  \:  \:  \:  -  -  -( 1)

We now use the formula

 \boxed{ \:  \: \displaystyle  \sf\int\limits_{0}^{ a }  f(x)  \, dx  = \int\limits_{0}^{ a }  f(a - x)  \, dx  \:  }

\displaystyle  \sf I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot \bigg(  \dfrac{\pi}{2} -  x \bigg)} }{ \sqrt{ \cot \bigg(  \dfrac{\pi}{2} -  x \bigg)}  +  \sqrt{ \tan \bigg(  \dfrac{\pi}{2} -  x \bigg)} }  \, dx

\displaystyle  \sf  \implies \: I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \tan x} }{ \sqrt{ \tan x}  +  \sqrt{ \cot x} }  \, dx  \:  \:  \:

\displaystyle  \sf  \implies \: I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx   \:  \:  \:   -  -  -( 2)

Now Equation 1 + Equation 2 gives

\displaystyle  \sf 2I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx    + \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \tan x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx

\displaystyle  \sf  \implies \: 2I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} +  \sqrt{ \tan x}  }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx

\displaystyle  \sf  \implies \: 2I = \int\limits_{0}^{ \frac{\pi}{2} }  1  \, dx

\displaystyle  \sf  \implies \: 2I =x \bigg|_{0}^{ \frac{\pi}{2} }

\displaystyle  \sf  \implies \: 2I = \frac{\pi}{2}  - 0

\displaystyle  \sf  \implies \: 2I = \frac{\pi}{2}

\displaystyle  \sf  \implies \: I = \frac{\pi}{4}

FINAL ANSWER

\displaystyle  \sf \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx   =  \frac{\pi}{4}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Answered by HarshitJaiswal2534
0

Step-by-step explanation:

SOLUTION

TO EVALUATE

\displaystyle  \sf\int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx

FORMULA TO BE IMPLEMENTED

 \boxed{ \:  \: \displaystyle  \sf\int\limits_{0}^{ a }  f(x)  \, dx  = \int\limits_{0}^{ a }  f(a - x)  \, dx  \:  }

EVALUATION

Let I be the given given integral

\displaystyle  \sf I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx  \:  \:  \:  -  -  -( 1)

We now use the formula

 \boxed{ \:  \: \displaystyle  \sf\int\limits_{0}^{ a }  f(x)  \, dx  = \int\limits_{0}^{ a }  f(a - x)  \, dx  \:  }

\displaystyle  \sf I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot \bigg(  \dfrac{\pi}{2} -  x \bigg)} }{ \sqrt{ \cot \bigg(  \dfrac{\pi}{2} -  x \bigg)}  +  \sqrt{ \tan \bigg(  \dfrac{\pi}{2} -  x \bigg)} }  \, dx

\displaystyle  \sf  \implies \: I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \tan x} }{ \sqrt{ \tan x}  +  \sqrt{ \cot x} }  \, dx  \:  \:  \:

\displaystyle  \sf  \implies \: I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx   \:  \:  \:   -  -  -( 2)

Now Equation 1 + Equation 2 gives

\displaystyle  \sf 2I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx    + \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \tan x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx

\displaystyle  \sf  \implies \: 2I = \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} +  \sqrt{ \tan x}  }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx

\displaystyle  \sf  \implies \: 2I = \int\limits_{0}^{ \frac{\pi}{2} }  1  \, dx

\displaystyle  \sf  \implies \: 2I =x \bigg|_{0}^{ \frac{\pi}{2} }

\displaystyle  \sf  \implies \: 2I = \frac{\pi}{2}  - 0

\displaystyle  \sf  \implies \: 2I = \frac{\pi}{2}

\displaystyle  \sf  \implies \: I = \frac{\pi}{4}

FINAL ANSWER

\displaystyle  \sf \int\limits_{0}^{ \frac{\pi}{2} }  \frac{ \sqrt{ \cot x} }{ \sqrt{ \cot x}  +  \sqrt{ \tan x} }  \, dx   =  \frac{\pi}{4}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions