Math, asked by mathewalexalex2505, 1 month ago

Integral of 1 divided by x square - 2 x

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \tt \int \frac{dx}{ {x}^{2} - 2x } \\

 =  \tt \int \frac{dx}{ x (x- 2) } \\

   \tt  = \frac{1}{2}  \int \frac{2.dx}{ x (x- 2) } \\

   \tt   = \frac{1}{2} \int \frac{x - (x - 2)}{ x (x- 2) }dx \\

   \tt  = \frac{1}{2} \int  \bigg \{\frac{x }{ x (x- 2) } -  \frac{(x - 2)}{x(x - 2)}  \bigg \}dx \\

   \tt   = \frac{1}{2} \int \frac{x }{ x (x- 2) } dx-   \frac{1}{2} \int \frac{(x - 2)}{x(x - 2)}  dx \\

   \tt  = \frac{1}{2}  \int \frac{1}{ x- 2 } dx-   \frac{1}{2} \int \frac{1}{x}  dx \\

 =  \tt\frac{1}{2}    ln(x- 2)  -   \frac{1}{2} \int \frac{1}{x}  dx \\

 =  \tt\frac{1}{2}    ln(x- 2)  -   \frac{1}{2}ln(x) +   C\\

 =  \tt   ln \sqrt{x- 2}  -  ln \sqrt{x}  +   C\\

 =  \tt   ln \sqrt{ \frac{x- 2}{x}}   +   C\\

Similar questions