Math, asked by MuhammadBilal1918, 2 months ago

Integral of 1 over a square minus x square square root

Answers

Answered by mathdude500
2

:  \implies  \tt \:Evaluate \:   \int\dfrac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}  } }

\bf \:\large \red{AηsωeR }

:  \implies  \tt \:Let \:  I   \:  =  \int\dfrac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}  } }

 :  \implies  \red{ \sf \: Put \: x \:  =  \: a \: sin \theta \: } -  - (1)

● On differentiating both sides, we get

:  \implies  \tt \: \red{ \sf \: \dfrac{dx}{d\theta}  = a \: cos\theta}

 :  \implies  \red{ \bf \: dx \:  =  \: a \: cos\theta \: d\theta}

● On substituting these values in given integral, we get

:  \implies  \tt \: I   =  \int\dfrac{a \: cos\theta \: d\theta}{ \sqrt{ {a}^{2} -  {a}^{2}   {sin}^{2}\theta } }

:  \implies  \tt \: I   =  \int \: \dfrac{a \: cos\theta \: d\theta}{ \sqrt{ {a}^{2}(1 -  {sin}^{2}  \theta)} }

:  \implies  \tt \: I   \:  = \int \:  \dfrac{a \: cos\theta \: d\theta}{ \sqrt{ {a}^{2} \:  {cos}^{2} \theta } }

:  \implies  \tt \: I   \:  =  \int \: \dfrac{a \: cos\theta \: d\theta}{a \: cos\theta}

:  \implies  \tt \: I   \:  =  \int \: d\theta \:

:  \implies  \tt \: I   \:  = \theta \:  +  \: c

:  \implies  \tt \: I   \:  =  \:  {sin}^{ - 1}  \bigg( \dfrac{x}{a} \bigg)  + \: c

 \bigg( \because  \tt\: from \: (1) \: sin\theta = \dfrac{x}{a} \bf\implies \:\theta =  {sin}^{ - 1} \dfrac{x}{a}  \bigg)

\large{\boxed{\boxed{\bf{Hence, \int\dfrac{dx}{ \sqrt{ {a}^{2} -  {x}^{2}  } } = \:  {sin}^{ - 1}  \bigg( \dfrac{x}{a} \bigg)  + \: c}}}}

Similar questions