Math, asked by pasananya27, 6 months ago

integral of √1+sinx- √1-sinx

Answers

Answered by PharohX
1

Step-by-step explanation:

 \green{ \large{ \sf \: SOLUTION}}

 \sf  \int  \{\sqrt{1 +  \sin(x) }  -  \sqrt{1 -  \sin(x) }  \} dx\\  \\  \sf \int \sqrt{1 +  \cos \bigg( \frac{\pi}{2}  - x \bigg) } dx  \:  \: -  \int\sqrt{1  -   \cos \bigg( \frac{\pi}{2}  - x \bigg) } dx

 \sf \large \: FORMULA \\  \star \sf \: 1 +  \cos( \theta)  = 2 \cos {}^{2} ( \frac{ \theta}{2} )  \\  \\  \star \sf \: 1  -  \cos( \theta)  = 2 \sin {}^{2} ( \frac{ \theta}{2} )

 \sf \int \sqrt{1 +  \cos \bigg( \frac{\pi}{2}  - x \bigg) } dx  \:  \: -  \int\sqrt{1  -   \cos \bigg( \frac{\pi}{2}  - x \bigg) } dx  \\  \\ \sf = \int \sqrt{2 \cos {}^{2}  \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg) } dx \:  -  \int \sqrt{2 \sin {}^{2}  \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg) } dx \\  \\  \sf =  \int \sqrt{2} \cos   \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg) dx -  \int \sqrt{2} \sin  \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg)  \\  \\ \sf =   \sqrt{2}  \bigg \{ \int  \cos   \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg) dx -  \int \sin  \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg)  \bigg \}

   \sf \: let \: \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg)   = t\\  \\ \sf  -  \frac{dx}{2}  = dt \\  \\  \sf \: dx \:  =  - 2dt

\sf   \sqrt{2}  \bigg \{ \int  \cos   \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg) dx -  \int \sin  \bigg( \frac{\pi}{4}  -  \frac{x}{2}  \bigg)  \bigg \} \\  \\   = \sf \:  \sqrt{2}  \bigg \{ \int \cos(t) ( - 2dt) -  \int \ \sin(t) ( - 2dt) \bigg \} \\  \\   = \sf \: 2 \sqrt{2}  \bigg(  - \int \cos(t) dt  +   \int \sin(t) dt \bigg) \\  \\ \sf \:  =  2 \sqrt{2}  \bigg(  - \sin(t)    + ( -  \cos(t) ) \bigg) \\  \\   = \sf \:  - 2  \sqrt{2}  \bigg( \sin \bigg(  \frac{\pi}{4}  -  \frac{x}{2}  \bigg)  +  \cos \bigg(  \frac{\pi}{4}  -  \frac{x}{2}  \bigg)  \bigg)

Similar questions