Integral of (1-sinx)/{sinx(1+sinx)} dx ??
Attachments:
Answers
Answered by
3
Answer:
Integral of (1-sinx)/{sinx(1+sinx)}
∫1−sinxsinx(1+sinx)dx=∫1+sinx−2sinxsinx(1+sinx)dx=∫1+sinxsinx(1+sinx)dx−∫2sinxsinx(1+sinx)dx=∫1sinxdx−2∫1(1+sinx)dx=∫cosecxdx−2∫1(1+cos(π/2−x))dx=ln|cosecx−cotx|−2∫12cos2(π/4−x/2)dx=ln|cosecx−cotx|−∫sec2(π/4−x/2)dx=ln|cosecx−cotx|+2tan(π/4−x/2)+c
hope it's help you
Answered by
2
Answer:
Take care of yourself and your family
Step-by-step explanation:
Hi back bencher
Similar questions
Math,
1 month ago
English,
1 month ago
Physics,
3 months ago
Chemistry,
9 months ago
India Languages,
9 months ago
Business Studies,
9 months ago