Math, asked by thebackbencher551, 3 months ago

Integral of (1-sinx)/{sinx(1+sinx)} dx ??​

Attachments:

Answers

Answered by Anonymous
3

Answer:

Integral of (1-sinx)/{sinx(1+sinx)}

∫1−sinxsinx(1+sinx)dx=∫1+sinx−2sinxsinx(1+sinx)dx=∫1+sinxsinx(1+sinx)dx−∫2sinxsinx(1+sinx)dx=∫1sinxdx−2∫1(1+sinx)dx=∫cosecxdx−2∫1(1+cos(π/2−x))dx=ln|cosecx−cotx|−2∫12cos2(π/4−x/2)dx=ln|cosecx−cotx|−∫sec2(π/4−x/2)dx=ln|cosecx−cotx|+2tan(π/4−x/2)+c

hope it's help you

Answered by Nannyx58
2

Answer:

Take care of yourself and your family

Step-by-step explanation:

Hi back bencher

Similar questions