Physics, asked by vllblavanyasaini0409, 7 months ago

integral of 1/✓t . cos (✓t + 3) . dt​

Answers

Answered by Asterinn
3

 \implies\displaystyle \int \sf{ \frac{1}{ \sqrt{t} } \:  cos( \sqrt{t} + 3) } \: dt

 \implies\displaystyle \int \sf{ \frac{cos( \sqrt{t} + 3) \: dt}{ \sqrt{t} } \:   }

Now we will Integrate the above expression using substitution.

 \sf \: \sqrt{t} + 3 = m

Now by differentiating we get :-

\sf \:  \dfrac{1}{2}  {t}^{ -  \frac{1}{2} }   dt= dm

\sf \:   { \dfrac{1}{{ \sqrt{t} }}}    \: dt= 2dm

\implies\displaystyle \int \sf{ cos( \sqrt{t} + 3)\frac{ \: dt}{ \sqrt{t} } \:   }

\implies\displaystyle \int \sf{ cos( m) \:  2 \: dm   }

\implies\displaystyle 2\int \sf{ cos( m)  \: dm   }

We know that :-

\underline{\boxed{\bf{\int \sf{ cos( x)  \: dx =   \sin(x)  + c  }  }}}

\implies\displaystyle 2\int \sf{ cos( m)  \: dm   }  = 2 \sin(m)  + c

now put m = √t +3

 \implies\displaystyle \sf2 \sin( \sqrt{t} + 3 )  + c

Where c is constant.

Answer :

\displaystyle \int \sf{ \frac{1}{ \sqrt{t} } \:  cos( \sqrt{t} + 3) } \: dt = \displaystyle \sf2 \sin( \sqrt{t} + 3 )  + c

Similar questions