Math, asked by javeriatahir2003, 7 hours ago

integral of 1 / z square + Y square whole 3/2

Answers

Answered by LaeeqAhmed
2

  \\ \sf \int   \frac{1}{( { {z}^{2} +  {y}^{2}  })^{ \frac{3}{2} }} \:  dy

 \sf  \purple{let}

 \sf y =  z tan \theta

 \implies  \sf  \frac{dy}{d \theta}  =  z  \sec ^{2}  \theta

 \implies  \sf  dy =  z  \sec^{2}\theta \:   d \theta

  \\ \sf \implies   \int  \small  \frac{1}{( { {z}^{2} +(  {z \tan \theta) }^{2}  })^{ \frac{3}{2} } }    z  \sec^{2}\theta \:   d \theta

  \\ \sf \implies   \int  \small  \frac{1}{ { {z}^{ \cancel3}(1 +  \tan  }^{2} \theta )^{ \frac{3}{2} } }  \cancel z  \sec^{2}\theta \:   d \theta

\\ \sf \implies    \frac{1}{ {z}^{2} } \int  \ \frac{1}{ { \sec  }^{3} \theta  }   \sec^{2}\theta \:   d \theta

\\ \sf \implies    \frac{1}{ {z}^{2} } \int  \ \frac{1}{ { \sec  } \theta  }    \:   d \theta

\\ \sf \implies    \frac{1}{ {z}^{2} } \int  \ cos   \theta      \:   d \theta

 \sf \implies    \frac{1}{ {z}^{2} }  \ sin   \theta     +\tt I_{c}

 \sf \implies    \frac{\ sin   \theta     }{ {z}^{2} }   + \tt I_{c} \sf \: ...(1)

 \sf \purple{but}

 \sf y = z \tan \theta

 \implies \sf  \tan \theta =  \frac{y}{z}

 \implies \sf  \tan ^{2}  \theta =  \frac{ {y}^{2} }{ {z}^{2} }

 \implies \sf  \sec ^{2}  \theta  - 1=  \frac{ {y}^{2} }{ {z}^{2} }

 \implies \sf  \sec ^{2}  \theta =  1 + \frac{ {y}^{2} }{ {z}^{2} }

 \implies \sf  \sec ^{2}  \theta =   \frac{  {z}^{2}  + {y}^{2} }{ {z}^{2} }

 \implies \sf  \cos ^{2}  \theta =   \frac{  {z}^{2}   }{ {z}^{2}+ {y}^{2} }

 \implies \sf  1 - \sin ^{2}  \theta =   \frac{  {z}^{2}   }{ {z}^{2}+ {y}^{2} }

 \implies \sf   \sin ^{2}  \theta =1 -    \frac{  {z}^{2}   }{ {z}^{2}+ {y}^{2} }

\implies \sf   \sin ^{2}  \theta =    \frac{  {z}^{2}   +  {y}^{2} -  {z}^{2}   }{ {z}^{2}+ {y}^{2} }

\implies \sf   \sin ^{2}  \theta =    \frac{    {y}^{2}   }{ {z}^{2}+ {y}^{2} }

\therefore \sf   \sin  \theta =    \frac{    y   }{ \sqrt{ {z}^{2}+ {y}^{2}} }

 \sf \purple{substituting \: in \: (1)}

 \sf    \frac{\ sin   \theta     }{ {z}^{2} }   + \tt I_{c} \sf

 \sf \implies    \frac{ \frac{y}{ \sqrt{ {z}^{2} +  {y}^{2}  } }    }{ {z}^{2} }   + \tt I_{c} \sf

\large{ \orange{ \sf \therefore    \frac{ y   }{ {z}^{2} \sqrt{ {z}^{2} +  {y}^{2}  } }   + \tt I_{c} \sf }}

HOPE IT HELPS!!

Similar questions