Physics, asked by pradheep27, 6 months ago

integral of (2x^2+2)dx​

Answers

Answered by Anonymous
16

Question :

Integrate

\bf\int\:(2x^2+2)dx

Theory :

•Properties of the indefinite integral

1) The indefinite integral of sum or difference of two function is equal to sum or difference of their integrals respectively.

\sf\int[f_1(x)\pm\:f_2(x)]dx=\int\:f_1(x)dx\pm\int\:f_2(x)dx

2) A constant factor of integrant may be taken outside the integral sign, if k is constant ,then

\sf\int\:kf(x)dx=k\int\:f(x)dx

Solution

We have to integrate :

\rm\int\:(2x^2+2)dx

We know that

\sf\int[f_1(x)\pm\:f_2(x)]dx=\int\:f_1(x)dx\pm\int\:f_2(x)dx

Then ,

\sf\int\:(2x^2+2)dx=\int\:2x^2\:dx+\int2dx

\sf=2\int\:x^2\:dx+2\int\:x^{0}\:dx

We know that

\sf\int\:x^n=\dfrac{x{}^{n+1}}{n+1}

Then ,

\sf=2\times\dfrac{x^{2+1}}{2+1}+2\times\dfrac{(x^{0+1})}{(0+1)}+c

\sf=2\times\dfrac{x^{3}}{3}+2\dfrac{x^{1}}{1}+c

\sf=\dfrac{2x^3}{3}+2x+c

\sf=\dfrac{2x^3+6x}{3}+c

Therefore,

\rm\int\:(2x^2+2)dx=\dfrac{2}{3}x^3+2x+c

Similar questions