Math, asked by rashmirhs410, 5 days ago

Integral of 6x^3 (x + 5) ^5 dx

Answers

Answered by chandan454380
0

Answer:

Integral of 6x^3 (x + 5) ^5 dx is

6x³ (x+5)^6/6 - [18x²  (x+5)^7/42 dx - {36x (x+5)^8/336 - 36(x+5)^9/3024}] + c ,     ( where c is an arbitrary constant)

Step-by-step explanation:

  \int\ 6x^3 (x + 5) ^5 \, dx

= 6x³ \int\  (x + 5) ^5 \, dx - \int{\frac{d}{dx} (6x^3) \int\ (x + 5) ^5 \, dx}dx

= 6x³ (x+5)^6/6 - \int 18x² (x+5)^6/6 dx

= 6x³ (x+5)^6/6 - [18x²  (x+5)^7/42 dx - \int {36x (x+5)^7/42}dx ]

= 6x³ (x+5)^6/6 - [18x²  (x+5)^7/42 dx - {36x (x+5)^8/336 - \int 36 (x+5)^8/336 dx }]

= 6x³ (x+5)^6/6 - [18x²  (x+5)^7/42 dx - {36x (x+5)^8/336 - 36(x+5)^9/3024}] + c

                                                                         ( where c is an arbitrary constant)

Similar questions