Math, asked by BrainlyUniverse, 5 months ago

integral of cot(theta) d theta​

Answers

Answered by sanju2363
3

Step-by-step explanation:

\implies \displaystyle \int \: { \sf cot( \theta) d\theta}

We know that :-

\boxed{ \bf \: cot( x) = \frac{ \: cos \: x}{sin \: x} }

\implies \displaystyle \int \: { \sf \frac{ \: cos( \theta) }{sin ( \theta) } d\theta}

We can solve the above problem using substitution method.

\: { \sf let \: \: sin\theta } = t

Now differentiating both sides :-

\: { \sf \: \: cos\theta \: d\theta } = dt

\implies \displaystyle \int \: { \sf \frac{ \: cos( \theta) \: d\theta}{sin ( \theta) } }

\implies \displaystyle \int \: { \sf \frac{ dt}{t} }

we know that :-

\underline{\boxed{\bf{ \displaystyle \int \frac{1}{a} \: da = \sf log(a) + c }}}

\implies \displaystyle \int \: { \sf \frac{ dt}{t} } = \sf \: log(t) + c

{ \sf put \: \: t = sin\theta}

\implies \sf \: log(sin \theta) + c

Answer :

\displaystyle \int \: { \sf cot( \theta) d\theta} = \sf \: log(sin \theta)

Where c is constant.

_________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec2 dx = tan x + C

∫ csc2 dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

Answered by bhavisr
3

Question:-

integral of cot(theta) d theta.

Answer:-

Integral cot(x) cot x = ln|sin x| + C.

\huge{\underline{\mathtt{\red{❥HO}\pink{PE}\green{IT'S}\blue{HE}\purple{LP}\orange{FUL}}}}

\sf\bigstar \red{mark \: as \: brainliest \:also \: follow \: me}

Similar questions