Math, asked by sudharsankmty, 5 months ago

integral of dx/1+4x^2​

Answers

Answered by LaeeqAhmed
2

Answer:

x + 4 \frac{ {x}^{3} }{3}  + c

Step-by-step explanation:

GIVEN:-

∫ 1 + 4 {x}^{2} \:  \:  dx

SOLUTION:-

 = ∫1dx  + ∫ 4 {x}^{2}

 = x + 4 \frac{ {x}^{3} }{3}  + c

Answered by varadad25
1

Answer:

\displaystyle{\boxed{\red{\sf\:\int\:\dfrac{1}{1\:+\:4x^2}\:dx\:=\:\dfrac{\arctan\:(\:2x\:)}{2}\:+\:C\:}}}

Step-by-step-explanation:

The given integrand is

\displaystyle{\sf\:\dfrac{1}{1\:+\:4x^2}}

We have to integrate it with respect to x.

\displaystyle{\sf\:\int\:\dfrac{1}{1\:+\:4x^2}\:dx}

Let this integral be I.

\displaystyle{\therefore\:\sf\:I\:=\:\int\:\dfrac{1}{1\:+\:4x^2}\:dx}

\displaystyle{\implies\sf\:I\:=\:\int\:\dfrac{1}{(\:2x\:)^2\:+\:1}\:dx}

By substituting u = 2x and differentiating both sides w.r.t. x, we get,

\displaystyle{\sf\:\dfrac{du}{dx}\:=\:\dfrac{d}{dx}\:(\:2x\:)}

\displaystyle{\implies\sf\:\dfrac{du}{dx}\:=\:2}

\displaystyle{\implies\:\boxed{\blue{\sf\:dx\:=\:\dfrac{1}{2}\:du\:}}}

Now, the integral becomes

\displaystyle{\sf\:I\:=\:\int\:\left(\:\dfrac{1}{u^2\:+\:1}\:\right)\:\dfrac{1}{2}\:du}

\displaystyle{\implies\sf\:I\:=\:\dfrac{1}{2}\:\int\:\dfrac{1}{u^2\:+\:1}\:du}

We know that,

\displaystyle{\boxed{\pink{\sf\:\int\:\dfrac{1}{u^2\:+\:1}\:du\:=\:\arctan\:u\:+\:C\:}}}

\displaystyle{\implies\sf\:I\:=\:\dfrac{1}{2}\:\arctan\:u}

By re-substituting u = 2x, we get,

\displaystyle{\implies\sf\:I\:=\:\dfrac{1}{2}\:\arctan\:(\:2x\:)}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\int\:\dfrac{1}{1\:+\:4x^2}\:dx\:=\:\dfrac{\arctan\:(\:2x\:)}{2}\:+\:C\:}}}}

Similar questions