Math, asked by jahanvikhatana01585, 9 months ago

integral of dx/x+3√x


Answers

Answered by BrainlyPopularman
9

GIVEN :

 \\ \implies \rm  \: \: A\:\: Function \:  \: \dfrac{dx}{x + 3 \sqrt{x} } \\

TO FIND :

Integration of function = ?

SOLUTION :

Let the function –

 \\ \implies \rm I =  \int \dfrac{dx}{x + 3 \sqrt{x} } \\

• We should write this as –

 \\ \implies \rm I =  \int \dfrac{dx}{\sqrt{x}( \sqrt{x} + 3)} \\

• Now put  \rm \sqrt{x} = t

• Differentiate with respect to 'x' –

 \\  \rm  \implies \dfrac{d(\sqrt{x})}{dx} = t \\

 \\  \rm  \implies \dfrac{1}{2 \sqrt{x}}dx = dt \\

 \\  \rm  \implies \dfrac{1}{ \sqrt{x}}dx =2dt \\

• So that –

 \\ \implies \rm I =  \int \dfrac{2dt}{(t+3)} \\

 \\ \implies \rm I = 2 \int \dfrac{dt}{(t+3)} \\

 \\ \implies \rm I = 2 \ln(t+3) + c \\

• Now replace 't' –

 \\ \implies \large{ \boxed{ \rm I = 2 \ln( \sqrt{x} +3) + c}} \\

Similar questions