Math, asked by MasterQuestioner, 2 months ago

integral of e^x (1+sinx cosx)/cos^2x dx

Answers

Answered by duragpalsingh
5

Given, ∫ e^x (1+sinx cosx)/cos^2x dx

= ∫ e^x { 1 / cos^2 x + sinx.cosx / cos^2 x} dx

= ∫ e^x (tan x + sec^2 x) dx

= ∫ e^x tanx . dx + ∫ e^x ( sec^2x) dx

= tan x . e^x - ∫ sec^2 x.e^x dx + ∫ e^x .sec^2 xdx + C

= e^x tanx + C

Answered by TheBrainlyStar00001
406

YOUR QUESTION.

  \\  \  \qquad  \huge{\cdot} \small\tt  \int e^x  \:  \dfrac{(1+sin(x)  \: cos(x))}{cos^2(x)}  \: \:  dx \\   \\

EXPLANATION.

  \\  \   \tt \:  \huge{➯} \small    \int  e^x \:  \bigg(\dfrac  { 1} { cos^2( x)} +  \dfrac{sin(x).cos(x)}{cos^2 (x)}\bigg)   \:  \:  dx \\   \\

 \\  \   \tt \:  \huge{➯} \small    \int  e^x \:  \bigg(tan(x) + sec ^{2}(x) \bigg)   \:  \:  dx \\   \\

 \\  \   \tt \:  \huge{➯} \small    \int  e^x \:  \bigg(tan(x)  \cdot \: dx+  \int  e^x \bigg(sec ^{2}(x) \bigg) \bigg)   \:  \:  dx \\   \\

 \\  \   \tt \:  \huge{➯} \:   \small  \:  tan(x)  \cdot \:  {e}^{x}  -   \int   sec ^{2}(x) \cdot \: e^x  \:  \:  dx \:  +  \: \int    \: {e}^{x}  \cdot \:  sec ^{2} \:   (x) \: dx \:  +  \: c\\   \\

 \\  \    \:   \bigstar \:  \underline{\boxed{   \tt {\purple {\small  \:    {e}^{x}  \:  \:  tan \: (x) \:  +  \: c}}}}\\   \\

 \underline{ \therefore  \:  \boldsymbol{Hence \:  \rm \: the \:answer \: is \:  \: { \pink {\boxed{\tt \: e {}^{x}  \: \: tan(x) \:  +  \: c  }}}}}.

✰ Hope it helps u ✰

Similar questions