Integral of log (sin^2x)
Answers
Answered by
3
Integral of Log Sin² x = 2 * I where
I = Integral Log Sin x with limits from x = 0 to π/2
![I= \int \limits_{0}^{\pi/2} {Log\ Sinx} \, dx\\\\y=\pi/2-x,\ \ dy=-dx\\\\\implies I= \int \limits_{0}^{\pi/2} {Log\ Cosy} \, dy\\\\I+I= \int \limits_{0}^{\pi /2} {Log(sinx\ cosx)} \, dx\\\\2I=\int \limits_{0}^{\pi/2} {(Log\ Sin2x-Log2)} \, dx\\\\2I=\frac{1}{2}\int \limits^{\pi}_{0} {Log\ sin\ z} \, dz- \frac{\pi}{2} Log2\\\\2I=\frac{1}{2}*2I-\frac{\pi}{2}Log2\\\\I=\frac{\pi}{2}Log2 I= \int \limits_{0}^{\pi/2} {Log\ Sinx} \, dx\\\\y=\pi/2-x,\ \ dy=-dx\\\\\implies I= \int \limits_{0}^{\pi/2} {Log\ Cosy} \, dy\\\\I+I= \int \limits_{0}^{\pi /2} {Log(sinx\ cosx)} \, dx\\\\2I=\int \limits_{0}^{\pi/2} {(Log\ Sin2x-Log2)} \, dx\\\\2I=\frac{1}{2}\int \limits^{\pi}_{0} {Log\ sin\ z} \, dz- \frac{\pi}{2} Log2\\\\2I=\frac{1}{2}*2I-\frac{\pi}{2}Log2\\\\I=\frac{\pi}{2}Log2](https://tex.z-dn.net/?f=I%3D+%5Cint+%5Climits_%7B0%7D%5E%7B%5Cpi%2F2%7D+%7BLog%5C+Sinx%7D+%5C%2C+dx%5C%5C%5C%5Cy%3D%5Cpi%2F2-x%2C%5C+%5C+dy%3D-dx%5C%5C%5C%5C%5Cimplies+I%3D+%5Cint+%5Climits_%7B0%7D%5E%7B%5Cpi%2F2%7D+%7BLog%5C+Cosy%7D+%5C%2C+dy%5C%5C%5C%5CI%2BI%3D+%5Cint+%5Climits_%7B0%7D%5E%7B%5Cpi+%2F2%7D+%7BLog%28sinx%5C+cosx%29%7D+%5C%2C+dx%5C%5C%5C%5C2I%3D%5Cint+%5Climits_%7B0%7D%5E%7B%5Cpi%2F2%7D+%7B%28Log%5C+Sin2x-Log2%29%7D+%5C%2C+dx%5C%5C%5C%5C2I%3D%5Cfrac%7B1%7D%7B2%7D%5Cint+%5Climits%5E%7B%5Cpi%7D_%7B0%7D+%7BLog%5C+sin%5C+z%7D+%5C%2C+dz-+%5Cfrac%7B%5Cpi%7D%7B2%7D+Log2%5C%5C%5C%5C2I%3D%5Cfrac%7B1%7D%7B2%7D%2A2I-%5Cfrac%7B%5Cpi%7D%7B2%7DLog2%5C%5C%5C%5CI%3D%5Cfrac%7B%5Cpi%7D%7B2%7DLog2)
Answer = - π Log 2.
I = Integral Log Sin x with limits from x = 0 to π/2
Answer = - π Log 2.
Similar questions