Math, asked by KJasleen9696, 11 months ago

Integral of mod sinx from pi to 10pi

Answers

Answered by roshinik1219
3

Given:

  • A function  \int_0^{10\pi}|\sin x|dx& is given

To Find:

  • Integral of  \int_0^{10\pi}|\sin x|dx&

Solution:

We know that,

            sin(x+\pi)= -sin(x)

So,

     |sin(x+\pi)|=|sin(x)| It  means |sinx|  is periodic, with period  \pi .

In any periodic function with period  T

          \int\limits^{a+kT}_a {f(x)} dx =   k \int\limits^{a+T}_a  f(x)dx

         \int_0^{10\pi}|\sin x|dx&=10\int_0^\pi|\sin x|dx\\

                               &=10\int_0^\pi\sin x\;dx\\

                               &=10\bigl(-\cos x\Bigr|_0^\pi\\

                               &=10(-\cos\pi+\cos0)\\

                               &=10\times2\\&=20

So,

            \begin{equation}\boxed{\int_0^{10\pi}|\sin x|dx=20}

Similar questions