Math, asked by rayagirimahesh123, 1 month ago

integral of sec^x/✓(tan^2x+4) ​

Answers

Answered by mathdude500
2

Appropriate Question

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {sec}^{2} x}{ \sqrt{ {tan}^{2}x + 4 } }  \: dx

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {sec}^{2} x}{ \sqrt{ {tan}^{2}x + 4 } }  \: dx

To evaluate this integral, we use method of Substitution,

 \red{\rm :\longmapsto\:Put \: tanx = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto \: \dfrac{d}{dx}  \: tanx =\dfrac{d}{dx} y}

 \red{\rm :\longmapsto \:  {sec}^{2} x =\dfrac{dy}{dx} }

 \red{\rm :\longmapsto \:  {sec}^{2} xdx = dy}

So, above given integral can be rewritten as

\rm \:  =  \:  \:\displaystyle\int\tt  \frac{dy}{ \sqrt{ {y}^{2}  + 4} }

\rm \:  =  \:  \:\displaystyle\int\tt  \frac{dy}{ \sqrt{ {y}^{2}  +  {2}^{2} } }

We know that

\boxed{ \bf{ \: \displaystyle\int\tt  \frac{dx}{ \sqrt{ {x}^{2}  +  {a}^{2} } } = log \:  | \: x \:  +  \:  \sqrt{ {x}^{2} +  {a}^{2}  }  \: |   \:  +  \: c}}

So, using this result, we get

\rm \:  =  \:  \:log \:  | \: y \:  +  \:  \sqrt{ {y}^{2} +  {2}^{2}  }  \: |   \:  +  \: c

\rm \:  =  \:  \:log \:  | \: y \:  +  \:  \sqrt{ {y}^{2} +  4  }  \: |   \:  +  \: c

On substituting the value of y = tanx, we get

\rm \:  =  \:  \:log \:  | \: tanx \:  +  \:  \sqrt{ {tan}^{2}x +  4  }  \: |   \:  +  \: c

Hence,

\rm \: \displaystyle\int\tt  \frac{ {sec}^{2} x}{ \sqrt{ {tan}^{2} x + 4} }  \: dx =  \:  \:log \:  | \: tanx \:  +  \:  \sqrt{ {tan}^{2}x +  4  }  \: |   \:  +  \: c

Additional Information :-

\boxed{ \bf{ \: \displaystyle\int\tt  \frac{dx}{ \sqrt{ {x}^{2} -  {a}^{2} } } = log \:  | \: x \:  +  \:  \sqrt{ {x}^{2} - {a}^{2}  }  \: |   \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int\tt  \frac{dx}{ \sqrt{ {a}^{2} -  {x}^{2} } } =  {sin}^{ - 1} \frac{x}{a}     \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int\tt  \frac{dx}{ {x}^{2} + {a}^{2}} =   \frac{1}{a}  \: {tan}^{ - 1} \frac{x}{a}     \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int\tt  \frac{dx}{ {x}^{2}  - {a}^{2}} =   \frac{1}{2a}  \: {log} \:  \:  \frac{x - a}{x + a}     \:  +  \: c}}

Similar questions