Math, asked by shiva48, 1 year ago

integral of secx / ( secx + tanx) ^2. dx

Answers

Answered by preethi23482
0
what is your question


shiva48: evaluating
preethi23482: ok
Answered by SmritiSami
2

The answer is  \frac{-1}{(sec x + tanx)^2} \\ + c

Given,

\frac{secx}{( secx + tanx )^2}

To Find,

Integration of  \frac{secx}{( secx + tanx )^2}

Solution,

Let \frac{1}{( secx + tanx )^2} = t

Differentiate on both the sides

\frac{-1}{( secx + tanx )^3} × (sec x tan x + sec² x) = \frac{dx}{dt}

\frac{- secx ( secx + tanx )}{( secx + tanx)^3} = \frac{-dt}{dx}

\frac{secx dx}{( secx + tan )^2} = -dt

∴ ∫ - dt

∴ -t + c

Hence, the answer is \frac{-1}{(sec x + tanx)^2} \\ + c

Similar questions