Math, asked by sonam8780, 3 months ago

Integral of secxdx find the part integral

Answers

Answered by Anonymous
2

Integral of secxdx

Integrating both sides, we get:

sec x dx = ln(sec x + tan x) + c.

Answered by manissaha129
2

Answer:

→ \int \sec(x) dx = \int \ \frac{ \sec(x)( \sec(x) +  \tan(x)) }{( \sec(x) +  \tan(x)) }dx\\(multiplying\: numerator\: and\: denominator\:by\:(sec(x)+tan(x))  \\ Now\:let \: ( \sec(x)  +  \tan(x) ) = t \\  \sec(x) ( \sec(x)  +  \tan(x) )dx = dt \\  \int \frac{dt}{t}  =  log |t|  + C \\  =  log |( \sec(x)  +  \tan(x) |  + C

  • log|(sec(x)+tan(x)|+C is the right answer.
Similar questions