Math, asked by harshparalkar28, 16 days ago

Integral of (sin x)^4 ×(cos x)^3 dx​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: A\:  =  \: \displaystyle\int\sf  {sin}^{4}x \:  {cos}^{3}x \: dx

 \rm \: \: A  =  \:  \: \:\displaystyle\int\sf  {sin}^{4}x \:  \times  {cos}^{2}x \times cosx \: dx

 \rm \:  \: A =  \: \: \:\displaystyle\int\sf  {sin}^{4}x \:  \times(1 -   {sin}^{2}x) \times cosx \: dx

\red{\bigg \{ \because \: {sin}^{2}x +  {cos}^{2}x = 1 \bigg \}}

Now, we use method of Substitution,

 \red{\rm :\longmapsto\:Let \: sinx = y} \\ \red{\rm :\longmapsto\:\dfrac{d}{dx} sinx = \dfrac{d}{dx}y} \\ \red{\rm :\longmapsto\:cosx = \dfrac{dy}{dx} \:  \:  \:  \:  \:  \:  \: } \\ \red{\rm :\longmapsto\:cosx \: dx \:  = dy \:  \:  \: }

On substituting these values we get

 \rm \:  A=  \:  \: \displaystyle\int\sf  {y}^{4} (1 -  {y}^{2}) \: dy

 \rm \:  A=  \:  \: \displaystyle\int\sf ( {y}^{4} -  {y}^{6}) \: dy

 \rm \:  A=  \:  \: \dfrac{ {y}^{4 + 1} }{4 + 1}  - \dfrac{ {y}^{6 + 1} }{6 + 1}  + c

 \rm \:  A=  \:  \: \dfrac{ {y}^{5} }{5}  - \dfrac{ {y}^{7} }{7}  + c

 \rm \:  A=  \:  \: \dfrac{ {(sinx)}^{5} }{5}  - \dfrac{ {(sinx)}^{7} }{7}  + c

 \rm \:  A=  \:  \: \dfrac{ {sin}^{5}x }{5}  - \dfrac{ {sin}^{7} x}{7}  + c

Additional Information :-

\green{\boxed{ \bf \:\displaystyle\int\sf  kdx=kx + c }}

\green{\boxed{ \bf \:\displaystyle\int\sf  sinx \: dx= -  \: cosx + c }}

\green{\boxed{ \bf \:\displaystyle\int\sf  cosx \: dx=   \: sinx + c }}

\green{\boxed{ \bf \:\displaystyle\int\sf  secx  \: tanx\: dx=   \: secx + c }}

\green{\boxed{ \bf \:\displaystyle\int\sf  cosecx  \: cotx\: dx=   -  \: cosecx + c }}

\green{\boxed{ \bf \: \displaystyle\int\sf  {x}^{n}  \: dx = \dfrac{ {x}^{n + 1} }{ n+ 1}  + c}}

\green{\boxed{ \bf \: \displaystyle\int\sf   {e}^{x}  \: dx =  {e}^{x}   + c}}

\green{\boxed{ \bf \: \displaystyle\int\sf tanx  \: dx = log(secx)    + c}}

\green{\boxed{ \bf \: \displaystyle\int\sf cotx  \: dx = log(sinx)    + c}}

\green{\boxed{ \bf \: \displaystyle\int\sf secx  \: dx = log(secx \:  +  \: tanx)    + c}}

\green{\boxed{ \bf \: \displaystyle\int\sf cosecx  \: dx = log(cosecx \:   -   \: cotx)    + c}}

Similar questions