Math, asked by dk9392192, 6 months ago

integral of sin2x/1+sin^2x​

Answers

Answered by Asterinn
6

\implies  \displaystyle\int \:\sf \dfrac{sin \: 2x}{ {sin}^{2}x }dx

We know that :-

\sf sin \: 2t \:  = 2 \: sin \: t \: cos\:t

 \implies  \displaystyle\int \sf\dfrac{2sin \: x \: cos \: x}{ {sin}^{2}x } dx

\implies 2 \displaystyle\int \:\sf \dfrac{ \: cos \: x}{ {sin} \: x } dx

 \sf \: Let \: sin \: x \:  = m \\  \sf   \therefore \: cos \: x \: dx = dm

\implies  2\displaystyle\int \:\sf \dfrac{ dm}{ m}

\implies 2  \sf \: log (m) + c

Where c is constant.

Put m = sin x

\implies   \sf \:2 log (sin \: x) + c

__________________

Learn more :-

∫ 1 dx = x + C

∫ sin x dx = – cos x + C

∫ cos x dx = sin x + C

∫ sec²x dx = tan x + C

∫ csc²x dx = -cot x + C

∫ sec x (tan x) dx = sec x + C

∫ csc x ( cot x) dx = – csc x + C

∫ (1/x) dx = ln |x| + C

∫ ex dx = ex+ C

∫ ax dx = (ax/ln a) + C

Similar questions