Math, asked by acdbr8477, 1 year ago

integral of sin²x-cos²x/sinxcosx

Answers

Answered by rishu6845
4

Answer:

log | secx / sinx | + c

Step-by-step explanation:

To find --->

-----------

∫ ( Sin²x - Cos²x / Sinx Cosx ) dx

Solution--->

--------------

∫ ( Sin² x - Cos²x / Sinx Cosx ) dx

=∫( Sin²x/Sinx Cosx)-(Cos²x/SinxCosx)dx

=∫ (Sinx / Cosx) dx - ∫ (Cosx / Sinx) dx

= ∫ tan x dx - ∫ Cot x dx

= log | sec x | - log | sinx | + c

We have a property of log

log m - log n = log m/n

Applying it here

=log | sec x/ sinx | + c

Additional information--->

-------------------------------------

1) ∫ sec x dx = log (secx + tanx ) + c

2) ∫ cosec x dx = log tan x/2 + c

Answered by Rishail6845
0

Answer:

Step-by-step explanation:

∫ ( Sin² x - Cos²x / Sinx Cosx ) dx

=∫( Sin²x/Sinx Cosx)-(Cos²x/SinxCosx)dx

=∫ (Sinx / Cosx) dx - ∫ (Cosx / Sinx) dx

= ∫ tan x dx - ∫ Cot x dx

= log | sec x | - log | sinx | + c

We have a property of log

log m - log n = log m/n

Applying it here

=log | sec x/ sinx | + c

Similar questions