Math, asked by anuj195, 1 year ago

integral of sinnx dx

Answers

Answered by kylar890
3

In=∫sinnx dx

∫u(x)v′(x)dx=u(x)v(x)−∫v(x)u′(x)dx

Here u(x)=sinn−1x and v′(x)=sinx

⇒v(x)=−cosx

Therefo‌‌‌‌‌‌‌‌re‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌In=−cosxsinn−1x+∫cos2x(n−1)sinn−2xdx=−cosxsinn−1x+(n−1)∫sinn−2xdx−(n−1)∫sinndx=−cosxsinn−1x+(n−1)∫sinn−2xdx−(n−1)In

⇒(1+n−1)In=−cosxsinn−1x+(n−1)∫sinn−2xdx

In=−cosxsinn−1xn+(n−1)nsinn−2xdx

Similar questions