integral of sinnx dx
Answers
Answered by
3
In=∫sinnx dx
∫u(x)v′(x)dx=u(x)v(x)−∫v(x)u′(x)dx
Here u(x)=sinn−1x and v′(x)=sinx
⇒v(x)=−cosx
ThereforeIn=−cosxsinn−1x+∫cos2x(n−1)sinn−2xdx=−cosxsinn−1x+(n−1)∫sinn−2xdx−(n−1)∫sinndx=−cosxsinn−1x+(n−1)∫sinn−2xdx−(n−1)In
⇒(1+n−1)In=−cosxsinn−1x+(n−1)∫sinn−2xdx
⇒In=−cosxsinn−1xn+(n−1)n∫sinn−2xdx
Similar questions