integral of (tan^3x-xtan^2x)dx
Answers
Answered by
0
Answer:
P
Step-by-step explanation:
Answered by
3
here's your answer
Integrate the following w.r.t. x (tan3x - xtan2x)
∫tan3x - xtan2x. dx
∫tan2x (tan x - x).dx
∫sec2x - 1(tan x - x).dx
∫sec2x.tan x.dx - ∫x.sec2x.dx - ∫tan x.dx + ∫x.dx
Let tanx = t then sec2x.dx = dt .
then break u.v in ∫x.sec2x.dx
directly
(tan2x)/2 - xtanx + ∫tan x.dx - ∫tan x.dx + (x2)/2
(tan2x)/2 - xtanx +(x²)/2
hope it HELPS you
Follow me....
Similar questions