Math, asked by sohail03, 6 days ago

integral of x^2/sqrt(x+5)​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \frac{ {x}^{2} }{ \sqrt{x + 5} } dx \\

Let\rm\:x+5=t^{2}

\rm\implies\:dx=2tdt

So,

  \rm\int \frac{  \{ {t}^{2}   - 5\} ^{2}  }{ \sqrt{ {t}^{2} } } .2tdt\\

  \rm = 2\int \frac{  \{ {t}^{2}   - 5\} ^{2}  }{ t} tdt\\

  \rm = 2\int   \{ {t}^{2}   - 5\} ^{2}  dt\\

  \rm = 2\int   ( {t}^{4}  - 10 {t}^{2}    + 25 ) dt\\

  \rm = 2 \bigg \{  \frac{{t}^{5}}{5}  - 10 \frac{ {t}^{3}  }{3}  + 25t + C  \bigg \}\\

  \rm =  \frac{2}{5} {t}^{5}-  \frac{ 20 }{3} {t}^{3}+50t + 2C  \\

  \rm =  \frac{2}{5} { (\sqrt{x + 5} )}^{5}-  \frac{ 20 }{3} {( \sqrt{x + 5}) }^{3}+50( \sqrt{x + 5} ) + k  \\

where, k=2C

Similar questions