Math, asked by aryanpratapsingh798, 2 months ago

integral of x^2tan^-1 (x^3)dx/1+x^6​

Answers

Answered by rishu6845
0

Answer:

 \bold{ \large{ \pink{ \boxed{ \boxed{ \dfrac{1}{2}   \: {( {tan}^{ - 1} {x}^{3}  )}^{2}  + c}}}}}

Step-by-step explanation:

 \displaystyle \int \dfrac{ {x}^{2}  {tan}^{ - 1} {x}^{3}  }{1 +  {x}^{6} } dx \\ let \:  \\  \:  {tan}^{ - 1}  {x}^{3}  = t \\ differentiating \: with \: respect \: to \: x\:  \\  \dfrac{1 \: (3 {x}^{2}) }{1 +  { ({x}^{3}) }^{2} } dx \:  =  \: dt \\  \dfrac{ {x}^{2} }{1 +  {x}^{6} } dx =  \dfrac{dt}{3}  \\  \displaystyle \int t \: dt \\  =   \dfrac{ {t}^{1 + 1} }{1 + 1}  + c \\  =  \dfrac{ {t}^{2} }{2}  + c \\  =   \dfrac{1}{2}  \: {( {tan}^{ - 1} {x}^{3} ) }^{2}  + c

Similar questions