Math, asked by sreelakshmics379, 5 months ago

integral of x^5 cosec^2(x)^6 dx​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int {x}^{5}  \cosec^{2} ( {x}^{6} ) dx \\

let \:  \:  {x}^{6}  =  \alpha  \\  \implies6 {x}^{5} dx = d \alpha \\  \implies {x}^{5} dx =  \frac{d \alpha }{6}

 =  \int \cosec^{2} ( \alpha )  \frac{d \alpha }{6}  \\

 =  \frac{1}{6}  \int \cosec^{2} ( \alpha )d \alpha   \\

 =  -  \frac{1}{6}  \cot( \alpha )  + c \\

 =  -  \frac{1}{6}  \cot( {x}^{6} ) + c \\

Similar questions