Math, asked by kaka1018, 9 months ago

Integral of x cube of sin x power of 4 of dx

Answers

Answered by saounksh
0

 \red{\huge{\underline{</p><h2><strong><u>✪</u></strong><strong><u>ANSWER</u></strong><strong><u>✪</u></strong></h2><p>}}}

 I = \frac{3x^4}{32}+ \frac{x^3}{32}[sin(4x) -8sin(2x)]

 \:\:\:\:\: - \frac{3x^2}{128}[16cos(2x) - cos(4x)]

 \:\:\:\:\:- \frac{6x}{128}[8sin(2x) - \frac{sin(4x)}{4}]

 \:\:\:\:\:+ \frac{6}{128} [\frac{cos(4x)}{16} - 4cos(2x)]

 \green{\underline{</p><h2><strong><u>★</u></strong><strong><u>EXPLAINATION</u></strong><strong><u>★</u></strong></h2><p>}}

 I = \int x^3sin^4(x)dx

Using integration by parts,

 I = x^3\int sin^4(x)dx

 \:\:\:\:\:- \int[\frac{d}{dx}(x^3)\int sin^4(x)dx]dx

 I = x^3I_1(x) - \int[3x^2I_1(x)]dx

 I = x^3I_1(x) - 3\int[x^2I_1(x)]dx

Now

 I_1 = \int sin^4(x)dx

 I_1 = \frac{1}{4}\int [2sin^2(x)]^2 dx

 I_1 = \frac{1}{4}\int [1 - cos(2x)]^2 dx

 I_1 = \frac{1}{4}\int [1 - 2cos(2x) + cos^2(2x)]dx

 I_1 = \frac{1}{4}\int [1 - 2cos(2x) + \frac{1 + cos(4x)}{2}]dx

 I_1 = \frac{1}{4}\int [\frac{3}{2}- 2cos(2x) + \frac{cos(4x)}{2}]dx

 I_1(x) = \frac{1}{4}[\frac{3x}{2} - \frac{2sin(2x)}{2} + \frac{sin(4x)}{8}]dx

 I_1(x) =\frac{3x}{8} + \frac{1}{32}[sin(4x) -8sin(2x)]

 I_1(x) =\frac{3x}{8} + f(sin(x))

Putting value of  I_1(x), we get

 I = x^3I_1(x) - 3\int[x^2[\frac{3x}{8}

 \:\:\:\:\:+ f(sin(x))] ]dx

 I = x^3[\frac{3x}{8} + f(sin(x))]

 \:\:\:\:\:- \frac{9}{8}\int x^3dx - 3\int [x^2 f(sin(x))]dx

 I = \frac{3x^4}{8}+ x^3f(sin(x))

 \:\:\:\:\:- \frac{9x^4}{32} - 3\int x^2 f(sin(x))]dx

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:\:- 3\int [x^2 f(sin(x))]dx

Using integration by parts in I again,

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:\:- 3[x^2\int f(sin(x))dx

 \:\:\:\:\:- \int [\frac{d}{dx}(x^2)\int f(sin(x))dx] dx

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:\:- 3x^2\int f(sin(x))dx

 \:\:\:\: +6\int [x\int f(sin(x))dx]dx

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:\:- 3x^2I_2(x) + 6\int [xI_2(x)]dx

Now,

 I_2(x) = \int f(sin(x))dx

 I_2(x) = \int \frac{1}{32}[sin(4x) -8sin(2x)]dx

 I_2(x) = \frac{1}{32}\int[sin(4x) -8sin(2x)]dx

 I_2(x) = \frac{1}{32}[\frac{-cos(4x)}{4} -8\frac{-cos(2x)}{2}]dx

 I_2(x) = \frac{1}{32}[-\frac{cos(4x)}{4} +4cos(2x)]dx

 I_2(x) = \frac{1}{128}[16cos(2x) - cos(4x)]

Now

Apply integration by part again in I,

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:\:- 3x^2I_2(x) + 6x\int I_2(x)dx

 \:\:\:\:\:- 6\int[\frac{d}{dx}(x)\int I_2(x)dx]dx

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:\:- 3x^2I_2(x) + 6xI_3(x)

 \:\:\:\:\:- 6\int[I_3(x)]dx

 I = \frac{3x^4}{32}+ x^3f(sin(x))

 \:\:\:\:- 3x^2I_2(x) + 6xI_3(x) - 6I_4(x)

where

 I_3(x) = \int I_2(x)dx

 I_4(x) = \int I_3(x)dx

Now

 I_3(x) = \int I_2(x)dx

 I_3(x) = \frac{1}{128}\int [16cos(2x)

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: - cos(4x)]dx

 I_3(x) = \frac{1}{128}[16\frac{sin(2x)}{2} - \frac{sin(4x)}{4}]

 I_3(x) = \frac{1}{128}[8sin(2x) - \frac{sin(4x)}{4}]

And

 I_4(x) = \int I_3(x)dx

 I_4(x) = \frac{1}{128}\int [8sin(2x)- \frac{sin(4x)}{4}]dx

 I_4(x) = \frac{1}{128} [8\frac{-cos(2x)}{2}- \frac{-cos(4x)}{16}]

 I_4(x) = \frac{1}{128} [\frac{cos(4x)}{16} - 4cos(2x)]

Hence

 I = \frac{3x^4}{32}+ \frac{x^3}{32}[sin(4x) -8sin(2x)]

 \:\:\:\:\:- \frac{3x^2}{128}[16cos(2x) - cos(4x)]

 \:\:\:\:\:- \frac{6x}{128}[8sin(2x) - \frac{sin(4x)}{4}]

 \:\:\:\:\:+ \frac{6}{128} [\frac{cos(4x)}{16} - 4cos(2x)]

Similar questions