Math, asked by resmiskalapurackal, 7 hours ago

integral of x²(x + 1)² dx​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  {x}^{2} {(x + 1)}^{2}  \: dx

\rm \:  =  \: \displaystyle\int\rm  {x}^{2}( {x}^{2} + 1 + 2x) \: dx

\rm \:  =  \: \displaystyle\int\rm ( {x}^{4}  +  {x}^{2} + 2 {x}^{3}) \: dx

We know,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{ {x}^{4 + 1} }{4 + 1}  + \dfrac{ {x}^{2 + 1} }{2 + 1}  + 2 \times \dfrac{ {x}^{3 + 1} }{3 + 1}  + c

\rm \:  =  \: \dfrac{ {x}^{5} }{5}  + \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{4} }{2}  + c

Hence,

\rm \:\boxed{\tt{ \displaystyle\int\rm  {x}^{2}  {(x + 1)}^{2} dx =  \: \dfrac{ {x}^{5} }{5}  + \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{4} }{2}  + c}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by meghna421124
2

answer: mark me brainlist please

Attachments:
Similar questions