Math, asked by nambiaraditya2003, 4 months ago

integral of x³sin(tan-¹x⁴)/(1+x⁸)​

Answers

Answered by skrithik043
0

Answer:

sorryyyyyyyyyyyyyyyyyyyyyyy

Answered by mathdude500
33

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

1. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \:sinx =  - cosx + c}

2. \:  \:  \:  \boxed{ \rm \: \dfrac{d}{dx} {tan}^{ - 1}  x = \dfrac{1}{1 +  {x}^{2} } }

3. \:  \:  \:  \boxed{ \rm \: \dfrac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }

\large\underline{\sf{Solution-}}

\sf \longmapsto \displaystyle\int \rm \: \dfrac{ {x}^{3} {sin\bigg( {tan}^{ - 1} {x}^{4}   \bigg) } }{1 +  {x}^{8} } dx

As we know that,

  • By using substitution method, we get.

\rm :\longmapsto\: {tan}^{ - 1}  {x}^{4}  = y

\rm :\longmapsto\: \rm \: Differentiate \:  w.r.t \:  x,  \: we  \: get

\rm :\longmapsto\:\dfrac{1}{1 +  {x}^{8} }  \times  {4x}^{3}  = \dfrac{dy}{dx}

\rm :\implies\:\dfrac{ {x}^{3} }{ 1 + {x}^{8} } dx = \dfrac{dy}{4}

On substituting these values in given integral, we get

\sf \longmapsto \displaystyle \: =  \:  \dfrac{1}{4} \int \tt \: siny \: dy

\rm :\longmapsto\: \rm \:  =   - \: \dfrac{1}{4} \:  cosy \:  +  \: c

(On substituting back the value of y, we get)

\rm :\longmapsto\: \rm \:  =   - \: \dfrac{1}{4} \:  cos \: ( {tan}^{ - 1} {x}^{4})  \:  +  \: c

Additional Information :-

1. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \: {x}^{n}dx = \dfrac{ {x}^{n + 1} }{n + 1}  + c }

2. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \:k \: dx = k x\:  +  \: c}

3. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \:cosx \: dx \:  =  \: sinx \:  +  \: c}

4. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \:\dfrac{1}{x} dx =  log(x) + c }

5. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \: {e}^{x}dx =  {e}^{x}   + c}

6. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \: {sec}^{2}x = tanx + c }

7. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \: {cosec}^{2} x =  - cotx + c}

8. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \:secx \: tanx \: dx = secx + c}

9. \:  \:  \:  \boxed{ \sf \displaystyle\int \tt \:cosecx \: cotx \: dx =  - cosecx + c}

Similar questions