Math, asked by drashtiapatel0007, 2 months ago

integral sec ^3/7 co sec ^
11/7 do:​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

 \displaystyle\rm :\longmapsto\: \int {sec}^{ \frac{3}{7}}x \:  {cosec}^{ \frac{11}{7}}x \: dx

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{dx}{ {cos}^{ \frac{3}{7}}x \:  {sin}^{ \frac{11}{7}}x}

Since,

\rm :\longmapsto\:\dfrac{3}{7}  + \dfrac{11}{7} = \dfrac{3 + 11}{7} = \dfrac{14}{7}  = 2 \: (even)

So,

 \red{ \tt \: Divide \: numerator \: and \: denominator \: by \:  {cos}^{2}x}

we get

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{\dfrac{1}{ {cos}^{2}x}}{ \dfrac{1}{ {cos}^{2}x }  \times {cos}^{ \frac{3}{7}}x \:  {sin}^{ \frac{11}{7}}x} \: dx

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{ {sec}^{2} x}{  {cos}^{ \frac{3}{7} - 2}x \:  {sin}^{ \frac{11}{7}}x} \: dx

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{ {sec}^{2} x}{  {cos}^{ \frac{3 - 14}{7}}x \:  {sin}^{ \frac{11}{7}}x} \: dx

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{ {sec}^{2} x}{  {cos}^{ \frac{- 11}{7}}x \:  {sin}^{ \frac{11}{7}}x} \: dx

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{ {sec}^{2} x}{ \:  {tan}^{ \frac{11}{7}}x} \: dx

Now, we use method of Substitution,

 \red{\rm :\longmapsto\:Put \: tanx = y} \\  \red{\rm :\longmapsto\: {sec}^{2}x \: dx = dy}

 \displaystyle\rm \:  \:  =  \:  \int\dfrac{dy}{ \:  {y}^{ \frac{11}{7}}} \:

 \displaystyle\rm \:  \:  =  \:  \int {y}^{ -  \frac{11}{7} }dy

 \rm \:  \:  =  \: \dfrac{ {y}^{ -  \frac{11}{7} + 1} }{ -  \frac{11}{7}  + 1}  + c

 \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: \displaystyle\rm \:  \: \:  \int  \:  {x}^{n}dx = \dfrac{ {x}^{n + 1} }{n + 1} + c \bigg \}}

 \rm \:  \:  =  \: \dfrac{ {y}^{\frac{ - 11 + 7}{7}} }{\frac{ - 11 + 7}{7}}  + c

 \rm \:  \:  =  \: \dfrac{ {y}^{\frac{ -4}{7}} }{\frac{ - 4}{7}}  + c

 \rm \:  \:  =  \:  -  \: \dfrac{7}{4} \times \dfrac{1}{ {y}^{ \frac{4}{7} } }   + c

 \rm \:  \:  =  \:  -  \: \dfrac{7}{4} \times \dfrac{1}{ {tan}^{ \frac{4}{7} }x }   + c

 \rm \:  \:  =  \:  -  \: \dfrac{7}{4} {cot}^{ \frac{4}{7} }x + c

Additional Information :-

\green{\boxed{ \bf{ \:  \int \: sinx \: dx =  - cosx + c}}}

\green{\boxed{ \bf{ \:  \int \: cosx \: dx =   sinx + c}}}

\green{\boxed{ \bf{ \:  \int \: cotx  \: dx= log |sinx| + c}}}

\green{\boxed{ \bf{ \:  \int \: tanx \: dx = log |secx| + c}}}

\green{\boxed{ \bf{ \:  \int \: secx \: dx = log |secx + tanx| + c}}}

\green{\boxed{ \bf{ \:  \int \: cosecx dx= log |cosecx  - cotx| + c}}}

\green{\boxed{ \bf{ \:  \int \:  {sec}^{2}x \: dx = tanx + c }}}

\green{\boxed{ \bf{ \:  \int \:  {cosec}^{2}x \: dx =  - cotx + c }}}

Similar questions