Integral sec²x(sec x. tanx) dx
Answers
Answered by
21
GIVEN :–
• A Function –
TO FIND :–
• Integration = ?
SOLUTION :–
• Let –
• Now let's put –
• And –
• So that –
• We know that –
• So that –
• Now replace 't' –
Answered by
28
I=∫(secx+tanx)29sec2xdx
Let secx+tanx=t
⇒secx−tanx=t1
Now (secxtanx+sec2x)dx=dt
secx(secx+tanx)dx=dt
secxdx=tdt,21(t+t1)=secx
I=21∫t29(t+t1)tdt
=21∫(t2−9+t2−13)dt
=21⎣⎢⎢⎡2−9+1t2−9+1+2−13+1t2−13+1⎦⎥⎥⎤
=−71t271−111t2111
=t211−1(111+7t2)
=−(secx+tanx)2111{111+71(secx+tanx)2}+k
Similar questions