Math, asked by himanshusingh58132, 10 months ago

integral sin cube x dx ka man gyat kijiye​

Answers

Answered by Anonymous
50

Answer:

\large\bold\red{\frac{ \cos(3x) }{12}  -  \frac{3 \cos(x) }{4}  + c}

Step-by-step explanation:

We have to integrate,

\displaystyle \int { \sin}^{3} x dx

But,

We know that,

 \sin(3x)  = 3 \sin(x)  - 4 { \sin }^{3} x \\  \\  =  > 4 { \sin }^{3} x = 3 \sin(x)  -  \sin(3x) \\  \\  =  >  { \sin }^{3}  x =  \frac{3 \sin(x)  -  \sin(3x) }{4}

Substituting this value,

We get,

 = \displaystyle \int \frac{3 \sin(x)  -  \sin(3x) }{4} dx \\  \\  \\  = \displaystyle \int \frac{3 \sin(x) }{4} dx - \displaystyle \int \frac{ \sin(3x) }{4}dx \\  \\  \\   = \frac{3}{4}  \displaystyle \int  \sin(x) dx -  \frac{1}{4}  \sin(3x) dx \\  \\  \\  =   \frac{3}{4} \times  ( -  \cos x)   -   \frac{1}{4}   \times  \frac{ (-  \cos 3x) }{3}   + c\\ \\   \\  =  -  \frac{3 \cos(x) }{4}  +  \frac{ \cos(3x) }{12}  + c \\  \\  \\  = \large \bold{  \frac{ \cos(3x) }{12}  -  \frac{3 \cos(x) }{4}  + c}

where,

c is an integral constant.

Answered by Anonymous
362

We have to integrate,

 \int { \sin}^{3} dx

But,

We know that,

\begin{lgathered}\sin(3x) = 3 \sin(x) - 4 { \sin }^{3} x \\ \\ =  4 { \sin }^{3} x = 3 \sin(x) - \sin(3x) \\ \\ = { \sin }^{3} x = \frac{3 \sin(x) - \sin(3x) }{4}\end{lgathered}

Substituting this value,

We get,

\begin{lgathered}= \displaystyle \int \frac{3 \sin(x) - \sin(3x) }{4} dx \\ \\ \\ = \displaystyle \int \frac{3 \sin(x) }{4} dx - \displaystyle \int \frac{ \sin(3x) }{4}dx \\ \\ \\ = \frac{3}{4} \displaystyle \int \sin(x) dx - \frac{1}{4} \sin(3x) dx \\ \\ \\ = \frac{3}{4} \times ( - \cos x) - \frac{1}{4} \times \frac{ (- \cos 3x) }{3} + c\\ \\ \\ = - \frac{3 \cos(x) }{4} + \frac{ \cos(3x) }{12} + c \\ \\ \\ = \large \bold{ \frac{ \cos(3x) }{12} - \frac{3 \cos(x) }{4} + c}\end{lgathered}

Similar questions