Math, asked by midhunskumar, 11 months ago

integral sin x-a/sinx+a

Answers

Answered by Anonymous
1

Answer:

\large\boxed{\sf{(x + a) \cos(2a)  -  \sin(2a)  log( \sin(x + a) ) }}

Step-by-step explanation:

\displaystyle \int  \frac{ \sin(x - a) }{ \sin(x + a) } dx

Let's assume that

x  + a = t \\  \\  =  > dx = dt \\  \\  =  > x = t - a

Substituting the values, we get

 = \displaystyle \int  \frac{ \sin(t - 2a) }{ \sin(t) }dt

Further expanding, we get

 = \displaystyle \int  \frac{ \sin(t)  \cos(2a)  -  \cos(t) \sin(2a)  } { \sin(t) }dt \\  \\   =  \cos(2a) \displaystyle \int dt -  \sin(2a) \displaystyle \int  \cot(t) dt \\  \\  = t \cos(2a )  -  \sin(2a)  log( \sin(t) )

Putting the respective values, we get

  \red{ (x + a) \cos(2a)  -  \sin(2a)  log( \sin(x + a) ) }

Answered by Dashingsuperstar
0

Answer:

 \frac{sin \: x - a}{sin \: x + a}  \\  \frac{sin \: x - a}{sin \: x + a}  \times  \frac{sin \: x - a}{sin \: x   \:  - a}  \\   \\  \frac{ {(sin \: x + a)}^{2} }{ {(sin \: x - a)}^{2} }  \\  \frac{ {sin }^{2}  x+  {a}^{2}  + sin \: x \: a}{  {sin}^{2} x +  {a}^{2}  - sin \: x \: a}  \\ answer = 1

This is your answer

Similar questions