Math, asked by himanshusingh58132, 1 year ago

integral sin x + cos x upon under root 1 + sin 2x DX​

Answers

Answered by Anonymous
44

Answer:

\large\bold\red{x+c}

Step-by-step Explanation:

We have to integrate,

 \displaystyle \int  \frac{ \sin(x)  +   \cos(x) }{ \sqrt{1 +  \sin(2x) } } dx \\\\  \\  = \displaystyle \int \frac{ \sin(x) +  \cos(x)  }{ \sqrt{1 + 2 \sin(x) \cos(x)  } } dx \\  \\\\  = \displaystyle \int \frac{  \sin(x)  +  \cos(x)  }{ \sqrt{ { \sin}^{2} x +  { \cos}^{2}x  + 2 \sin(x) \cos(x)   }} dx \\  \\\\ =  \displaystyle \int \frac{ \sin(x) +  \cos(x)  }{ \sqrt{ {( \sin x  +  \cos x)  }^{2} } } dx \\\\  \\   = \displaystyle \int \frac{ \sin(x) +  \cos(x)  }{ \sin(x)  +  \cos(x) }  dx \\  \\\\  = \displaystyle \int dx \\  \\\\  = x + c

where, c is any integral constant.

Similar questions