Math, asked by ajaykumarak123p8zfuq, 5 months ago

integral sin²x*sinx​

Attachments:

Answers

Answered by TheValkyrie
11

Answer:

\sf I = \dfrac{cos^{3}\:x }{3}-cos\:x+C

Step-by-step explanation:

Given:

  • sin² x × sin x

To Find:

\displaystyle \sf \int\limits {sin^{2} x\: . \: sin\:x} \, dx

Solution:

\displaystyle \sf \int\limits {sin^{2} x\: . \: sin\:x} \, dx

We know that,

sin² x = 1 - cos² x

Substituting it,

\displaystyle \sf \int\limits {(1-cos^{2} x)\: . \: sin\:x} \, dx

Now let us take,

t = cos x

Differentiating on both sides with respect to x,

dt = -sin x dx

-dt = sin x dx

Substituting in the above equation we get,

\displaystyle \sf \int\limits {(1-t^{2} )} \, .-dt

\implies \displaystyle \sf \int\limits {(t^{2} -1)} \, .dt

Now we know that,

\displaystyle \sf \int\limits {x^n} \, dx =\dfrac{x^{n+1}}{n+1}

\displaystyle \sf \int\limits {1} \, dx =x+C

Applying the identities,

\implies \sf \dfrac{t^3}{3} -t + C

Give back the value of t,

\implies \boxed{ \sf \dfrac{cos^{3}\:x }{3}-cos\:x+C}


BrainlyPopularman: Nice
TheValkyrie: Thank you!
Similar questions