Math, asked by durash, 4 months ago

integral (tan^2x sec^2x)/(1-tan^6x)dx​

Answers

Answered by Anonymous
13

Answer for the Above Questions

Step by Step Explanation ☝️

Attachments:
Answered by hukam0685
19

\bf \pink{\int \frac{ {tan}^{2}x \:  {sec}^{2}x  }{1 -  {tan}^{6}x } dx = \frac{1}{6}log    \bigg| \frac{1 +  {tan}^{3}x }{1 - {tan}^{3}x}  \bigg |  + C}\\

Given:

  • \int \frac{ {tan}^{2}x \:  {sec}^{2}x  }{1 -  {tan}^{6}x } dx   \\

To find:

  • Integrate the function.

Solution:

Concept/formula to be used:

  • Apply substitution method.
  •  \int \:  \frac{1}{ {a}^{2}  -  {x}^{2} } dx =  \frac{1}{2a} log    \bigg| \frac{a + x}{a - x}  \bigg |  + C \\

Step 1:

Put

 {tan}^{3} x = t\\

Differentiate with respect to x both sides.

3 {tan}^{2} x. {sec}^{2} x =  \frac{dt}{dx}  \\

\because \frac{d}{dx}x^n=nx^{n-1}\\

and

\because \frac{d}{dx}tan\:x={sec}^{2} x\\

or

 {tan}^{2} x. {sec}^{2} x \:  dx=  \frac{1}{3} dt \\

Substitute into function.

\int \frac{ {tan}^{2}x \:  {sec}^{2}x  }{1 -  {tan}^{6}x } dx =\frac{1}{3}\int   \frac{ 1  }{1 -  {t}^{2}}dt  \\

Step 2:

Integrate the function.

\frac{1}{3}\int   \frac{ 1  }{1 -  {t}^{2}}dt =  \frac{1}{3}.  \frac{1}{2 \times 1} log    \bigg| \frac{1 - t}{1 + t}  \bigg |  + C \\

or

\frac{1}{3}\int   \frac{ 1  }{1 -  {t}^{2}}dt =  \frac{1}{6}log    \bigg| \frac{1 + t}{1 - t}  \bigg |  + C \\

Step 3:

Redo substitution.

Put

 t =  {tan}^{3} x

So,

\int \frac{ {tan}^{2}x \:  {sec}^{2}x  }{1 -  {tan}^{6}x } dx = \frac{1}{6}log    \bigg| \frac{1 +  {tan}^{3}x }{1 - {tan}^{3}x}  \bigg |  + C \\

Thus,

\bf \int \frac{ {tan}^{2}x \:  {sec}^{2}x  }{1 -  {tan}^{6}x } dx = \frac{1}{6}log    \bigg| \frac{1 +  {tan}^{3}x }{1 - {tan}^{3}x}  \bigg |  + C \\

_______________________________

Learn more:

1) 1/√5ˣ²+3 + 1/9-4ˣ²,Integrate the given function defined on proper domain w.r.t. x.

https://brainly.in/question/5597038

2) Integrate the function w..r. to x : log x

https://brainly.in/question/6638950

Similar questions