Math, asked by Anonymous, 1 month ago

Integral
{ \boxed{ \bold \red{ \int(2x + 5) {}^{3} dx}}}
Don't spam​

Answers

Answered by sajan6491
5

 \bold{\int {(2x+5)}^{3} \, dx}

1. Expand

{\boxed{ \bold{\int 8{x}^{3}+60{x}^{2}+150x+125 \, dx}}}

 \bold{2. \:  Use  \: Power \:  Rule: \int {x}^{n} \, dx=\frac{{x}^{n+1}}{n+1}+C}

 {\boxed{\bold{2{x}^{4}+20{x}^{3}+75{x}^{2}+125x}}}

3. Add constant.

 {\boxed{\bold{2{x}^{4}+20{x}^{3}+75{x}^{2}+125x+C}}}

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  {(2x + 5)}^{3} \: dx

To solve this integral, we use method of Substitution

So, Substitute

\red{\rm :\longmapsto\:2x + 5 = y}

\red{\rm :\longmapsto\:2dx= dy}

\red{\rm :\longmapsto\:dx= \dfrac{dy}{2} }

So, on substituting these values, we get

\rm \:  =  \: \displaystyle\int\rm  {y}^{3} \: \dfrac{dy}{2}

\rm \:  =  \: \dfrac{1}{2}\displaystyle\int\rm  {y}^{3} \: dy

\rm \:  =  \: \dfrac{1}{2} \times \dfrac{ {y}^{3 + 1} }{3 + 1}  + c

\rm \:  =  \: \dfrac{1}{2} \times \dfrac{ {y}^{4} }{4}  + c

\rm \:  =  \: \dfrac{ {y}^{4} }{8}  + c

\rm \:  =  \: \dfrac{ {(2x + 5)}^{4} }{8}  + c

Hence,

\rm \implies\:\boxed{ \tt{ \: \displaystyle\int\rm  {(2x + 5)}^{3}dx =  \: \dfrac{ {(2x + 5)}^{4} }{8}  + c \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions