integral x+5upon 3xsquare +13x-10
Answers
Answered by
1
Answer:
Step-by-step explanation
(x+5)/(3x^2+13x-10)
∫(x+5)/(3x^2+13x−10)dx
Simplify the integrand:
∫(x+5)/(3x^2+13x−10)dx=∫1/(3x−2)dx
Let u=3x−2.
Then du=(3x−2)′dx=3dx and we have that dx=du/3
Thus
∫1/(3x−2)dx=∫1/3u du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du
with c=1/3
and f(u)=1/u
∫1/3u du=(1/3∫1/u du)
The integral of 1/u is
ln(|u|)/3
∫1/udu=ln(|u|)/3
Recall that u=3x−2:
ln(|u|)/3=1/3.ln(|(3x−2)|)
Therefore,
∫(x+5)/(3x2+13x−10)dx=1/3.ln(|3x−2|)
Add the constant of integration:
∫(x+5)/(3x2+13x−10)dx=1/3.ln(|3x−2|)+C
Answer: ∫(x+5)/(3x2+13x−10)dx=1/3.ln(|3x−2|)+C
Similar questions