Math, asked by devarajrv761, 7 months ago

integral x.e^x. dx please help​

Answers

Answered by Anonymous
4

Solution:-

Using Integration by part method

 \rm \int(UV)dx = U \int  Vdx -   \int \bigg \{ \bigg( \dfrac{du}{dx} \bigg) \int  vdx \bigg \}dx \\

We have to integrate

 \to  \rm\int  x  {e}^{x} dx \\

Now determine the U and V use this method

=> I L A T E

:- I = inverse trigonometry

:- L = Logarithmic

:- A = Algebra

:- T = Trigonometry

:- E = Exponential

Now according to this method take

=> x = U and e^x = V

Now we can write

\to  \rm\int  x  {e}^{x} dx \\

 \rm \:  = x \int  e {}^{x} dx -  \int  \bigg \{ \bigg( \dfrac{d}{dx} x \bigg) \int e{}^{x} dx \bigg \}dx + c \\

 \rm \:  = x \times e {}^{x}  -  \int(1)  \{\times e {}^{x}  \big \}dx + c \\

 \rm  = x {e}^{x}  -  \int {e}^{x} dx + c \\

 =  \rm \: x {e}^{x}  -  {e}^{x}  + c

Answer

=  \rm \: x {e}^{x}  -  {e}^{x}  + c

Similar questions